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Abstract. It is shown that the finite dimensional irreducible representations of the quantum 
matrix algebra M&) (the coordinate ring of GL,,,(Z)) exist only when both q andp are 
roots of unity. In this case the space of states has either the topology of a t o m  or a 
cylinder, which may be thought of as generalizations of cyclic representations. 

1. Introduction 

The representation theory of quatized universal enveloping algebras [l-51 has been 
tensively studied by many authors [6-101 and many beautiful results have been obtained. 
Among these are the cyclic representations which occur when q is a root of unity. 
However, the representation theory of the dual objects, that is the quantization of the 
algebra of functions on the group (quantum matrix algebras) has not been systemat- 
ically studied. 

Only a few concrete representations exist [ l l ,  121. The first attempt towards such a 
goal has been reported in [13], where the irreducible finite dimensional representations 
of MJ2) were classilied and it was shown that such Tifeducible representations exist 
only when q is a root of unity. These representations were either cyclic or highest 
weight. 

Although the representation theory of a multiparametric quantum enveloping alge- 
bra is trivial (since the extra parameters appear only in the coproducts in the form of 
a twisting [4]), the corresponding task for the multiparametric quantum matrix group 
is far from straightforward, since the extra parameters now appear in the algebra itself. 
As we will see this will lead to quite new features in the representations of the quantum 
matrix algebra. 

In this paper we study the representations- of M4J2) (the coordinate ring of 
GL&)) and classify its finite dimensional irreducible representations. Our main results 
are the following: 

(i) Finite dimensional irreducible representations exist only when both q andp are 
roots of unity. 

(ii) The space of states has the topology of a torus or that of a cylinder, depending 
on the value of some parameters which define the presentation. 

(E) When none of the parameters q or p is a root of unity, the states occupy the 
sites of an idnite rectangular lattice. 

7 Email: Vahidka@iream.bitnet. 

0305-4470/93/226277+08$07.50 @ 1993 IOP Publishing Ltd 6211 



6278 V Karimipour 

(iv) When q is not a root of unity, butp is, the states occupy the sites of an insnitely 
long cylinder. 

2. The quantum matrix algebra GL,,(2) 

This algebra [ 151 is generated by the entries of a matrix 

and subject to the relations: 

RTiT*= TZTiR 
where R is a two parametric solution of the Yang-Baxter equation: 

The relations which follow from ( 1 )  and (2) are 

4 
P 

ab=qpba bd=- db 

ac=- 9 ca cd=qpdc 
P 
1 bc=T cb 
P 

ad-da=p(q-q-')bc. 

(3) 

Compared with GL,(2) this quantum group has two particular features which make its 
representation theory quite different. The first is that the generators b and c no longer 
commute and hence one cannot build the representation space from common eigenvec- 
tors of b and c as in the work of [13]. The second is that the quantum determinant 
D=ad-qp bc is not central, but satisfies the relations: 

Da=aD Db=p2bD 

Dd=dD De=p-2cD. (4) 

The following relations can also be obtained by repeated application of (3) 

d'd- ai?'= qp( 1 - q-z")d'-'bc 

when 4" =p' = 1 one sees from (3) and (5) that a", b", E and d" are central. 
In 1131 both the commutativity of b and c and the centrality of the quantum determ- 

inant have been used to a large extent. In our case when the above facts are no longer 
true, we must proceed in a different way. 
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Denote the product of b and c by M(M=bc). Then from (3) we find 
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Ma = q-'& Mb=p2bM 

Mc=p-'cM Md= $dM. 
(6) 

It is clear from (4) that the operators M and D are commuting: 

MD = DM. (7) 
We will use these commuting operators in the following sections to build up the irreps. 
of Mq.pW 

3. Finite dimensional irreducible representations 

Following [13] we call those M,.,(2) modules in which one or more of the generators 
identically vanish, trivial modules. In these cases the representation reduces to that of 
a simpler algebra. Clearly the interesting representations are non-trivial ones to which 
we restrict ourselves in the rest of this paper. The following lemma [13] establishes the 
condition for non-triviality of the representation. 

Lemma 1. Let V be a vector space. Then an irreducible representation 
p :  M,,(Z)+End(V) is trivial if b or c have zero eigenvalue in their spectrum. 

Proof. We follow a slightly Werent line of reasoning which is simpler than that of 
[13]. Without loss of generality, lets assume that Kb=Kerb#{o}, then Since Kb is a 
subspace of V, we can choose a basis for it like: {e , ,  ... em}. From ( 3 )  we see that U&, 

cKb and d& are all subspaces of Kb. Therefore the vectors {ei} transform among 
themselves under the action of a, b, c and d and hence & is an invariant subspace 
of V. Since the representation is irreducible Kb= V. Therefore b&=bV=O and the 
representation is trivial. Hereafter we assume that &=Kc= (0). 

Lemma 2. A fmite dimensional irreducible M,, (2 )  module exists only when both q and 
p are roots of unity. 

Proof. Let vo be a common eigenvector of M and D. 

Mv0 = p vo D V ~  = avo. (8) 

Mu. = $% U. D ~ , = ~ Z U , .  (9) 

Then from (3), (4) and (6) one sees that the string of states v,=d"vo satisfy: 

For the parameter q we adopt the reasoning of [ 131. To have finite dimensional represen- 
tations one must have d'vo=O for some I while all the vectors v, for n < l  are independent. 
Consider the string of states PUO where U O = V , - I .  Again one must have aruo=O but 
aP-'uo#O. Then one will have 

O =  da'uo=qp(q-~-l)pd'-'uo 

which means that q must be a root of unity. One the other hand, suppose that p is not 
a root of unity; then the string of states u.=b"vo satisfy 

Mu,, =p"p U, Du. =p'"Lu,. 
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I f p  is not a root of unity all the above states will be independent and the representation 
cannot be finite. 

Hereafter we set g'=pr= 1 (note: g andp may be different roots of unity, i.e g"= 
p'*= 1. We set r to be the least common multiplier of r, and r2). 

In this case U', b', E and d' are central and on V we set them equal to q., qb, qc 
and T]d respectively. Clearly flb and qc are both different from zero, otherwise Kb and 
K, will have non-zero elements. 

We now classify the finite dimensional irreducible representations of MqJ2) which 
fall into three classes depending on the values of T ] ~  and qd. 

3.1. Toroidal representations (7. # 0 # qd) 
We denote the vector vo introduced in ( S j  by IO, 0 )  and consider the lattice of states 
W (figure 1) : 

These states are the common eigenvectors of M and D (see (3)-(6)). 

We define the action of a and c on the state 10,O) as follows: 

Then we have: 

Theorem 3. The following defines an irreducible representation of Mq,p(2). 

W= { I l, n) =b'dn[ 0,  O> (10) 

 MI^ n > = p 2 ' q W ~ ,  n> DII,n)=pxkIl, n). (11) 

u10,O) =a0 IO, r -  1) (12) 

Ogl, n < r - l } .  

c/o, 0) = yo1 I - 1, o>. 

(i) bll, n)=[I+ 1, n) blr-Ln)=tlblO,n) 

(iii) cll,n)=pZ'g2"qby~Il-1,n) c I O , n ) = ~ " y I r - I , n )  

(io) a[l,n)=(w)' @Oqd+-(g2"-1)~O~b Ilpn-1) 

Proof. (i) and (ii) are obvious. We give an explicit vescation of (iii). (iv) is obtained 
by straightforward manipulations. Acting with c on the state [ I ,  n) and using the com- 
mutation relations (3) we fmd 

all, 0) = (gp)'aoll, r -  1). ( P ,  ) 

ell, n) = cb'd"[O, O> =p2'(gp~b'd"c10, 0) .  

r-1 

0.0 r-I 

Figure 1. The lattice of states W. 
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Using (12) and definition of states (10) we arrive at: 

clZ, n)=pz(qp)nb'd"yolr- 1, O>=pz(qp)ny~b'dnb'-llO, 0). 

Again using commutation relations and the fast that b'= q b  we finally find 

The second part of (iii) is proved similarly: 

Figure 2. Toroidal representation. 

It is interesting to note that the space of states has the topology of a torus (see figure 
2 where the actions of all the generators are shown graphically). 

The dimension of this representation is I*. To prove that it is the only irreducible 
representation in this case, we note that the dimension of V cannot be greater than ? 
since otherwise the above lattice of states, which is based on a single common eigenvec- 
tor of M and D, will provide an invariant subspace which contradicts the irreducibility 
of the representation. The dimension of V cannot be less that ? either, since then one 
of the strings of states d"(0,O) or b"(0,O) must terminate for some value of n less than 
r (i.e. d"10,0=0, n<r)  This then means that 

?do, o)=d'-n(d")O,O))=O 

which contradicts the assumption of qt i#O. 

Remark. The parameters a0 yo A and p are not independent of q=, q b ,  qc and qd. The 
following relations exist among them: 

q c =  Y6 t1i-I P=yOqb (13) 

The proof of these formulae is given in the appendix. We now turn to the second kind 
of representations. 
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3.2. Cylindrical representations (q.= q p 0 )  

In this case the representation in theorem 3 is modified as follows: 

dI,r-l)=O all, O)=O (15) 

(16) 

All other relations remain intact. This kind of representation may be called a cylindrical 
representation and may be thought of as a truncated form of the toroidal representation 
(figure 3). 

Figure 3. Cylindrical representation. 

Where only one of the parameters (say qJ is zero, the relations (15) 
modified as follows: 

dI, r- 1) = q& 0) a11,0)=0 

all, n> = (w$ (P- 
4 

This then may be thought of as a semitoroidal representation in which d traverses 
completely one of the cycles of the torus while a does not. 

4. Infinite dimensional representations 

In theorem 3 one can relax the conditions on the right-hand side. Then one can check 
easily that the left-hand side equations define an infinite dimensional representation of 
MqS(2) on the two-dimensional lattice:W= (11, n) - 00 < I ,  n< 00) 

bl E, n )  = I I+ 1, n )  

cli, n)=p2'$Ip1i- I, n )  

Note. The states of this .representation are not necessarily built up on a vacuum (i.e. 
11, n)#b'd"lO, 0)). 
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If both q and p are roots of unity (q'=p'= 1) then one can consistently identify the 

11, n )  - 1  I, n + r ) .  

states as follows : 

IZ, n )  =I!+ r, n) 
Representation (19) will induce a toroidal representation on the equivalence class of 
these states. 

If onlyp is a root of unity, then one can consistently identify $e states as follows: 

I Z+ r, n )  = f l  Z, n )  

Equations (19) then induce a cylindrical representation on the equivalence of these 
states. By setting A=- ( p / q ) p  one can also obtain a lowest weight module. 

5. Discnssion 

In the classical limit (q=p= 1). the coordinate ring of GL,,.42) degenerates into a free 
Abelian algebra whose irreducible finite dimensional representations are one dimen- 
sional wher the generators a, b, c and dare represented by the pure numbers qa, qb, qc,  
and q d ,  respectively. This l i t  is obtained from the representations in this paper by 
noting that when I =  1, the lattice of states in figure 1 has only one single state, namely 
140) and from theorem 1 we have ~. 

:IO, O)=aolO, 0) b10,0)=~b10,0> 
~1o,o>=yolo,o> dO.O)= qJ0,O). 

From (14) and (15) we also obtain yo= qc and ao= q. which proves the assertion. 
What appears to be very interesting about the representation theory of quantum 

matrix algebras compared with those of the quantized universal enveloping algebras is 
that in the latter case the classical&it is a tie algebra and one can use the decomposition 
of the root space of the tie algebra into the Cartan subalgebra and positive and negative 
root system for building up the representation. R e d  that this decomposition remains 
essentially intact in the process of quantization. This then leads to a parallelism between 
the representation theory in the deformed and the undeformed case. However, for the 
case of quantum matrix algebras such a decomposition and the resulting parallelism 
do not exist. One expects that completely new features arise in their representation 
theory (see, for example [16, 171). 

Appendix. Proof of equation (13) and (14) 

Repeated use of theorem 3 gives the following: 

c'-llr-l, o>=(qbyo)'-l lo, 0). 

q c l r -  1, O)=(~lbYO)r-'yO1'--l. 0 )  

Acting by c on both sides we obtain 

where we have used (12). Comparison of both sides gives the 6rst relation of (13). To 
obtain the second relation of (13) we note that 

p10,0)=MIO, O)=bclO, O)=b(yolr-l, O))=YO~b10,0). 
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To prove the first relation of (14) we act on the state IO, 0) With D =ad- p M  and use 
theorem 3. Finally we note that 

Acting on both sides with a and using (12) gives (14). 
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